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Abstract

Longitudinal and behavioral preclinical animal studies generate complex data, which may

not be well matched to statistical approaches common in this literature. Analyses that do not

adequately account for complexity may result in overly optimistic study conclusions, with

consequences for reproducibility and translational decision-making. Recent work interrogat-

ing methodological shortcomings in animal research has not yet comprehensively investi-

gated statistical shortcomings in the analysis of complex longitudinal and behavioral data.

To this end, the current cross-sectional meta-research study rigorously reviewed published

mouse or rat controlled experiments for motor rehabilitation in three neurologic conditions to

evaluate statistical choices and reporting. Medline via PubMed was queried in February

2020 for English-language articles published January 1, 2017- December 31, 2019.

Included were articles that used rat or mouse models of stroke, Parkinson’s disease, or trau-

matic brain injury, employed a therapeutic controlled experimental design to determine effi-

cacy, and assessed at least one functional behavioral assessment or global evaluation of
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function. 241 articles from 99 journals were evaluated independently by a team of nine rat-

ers. Articles were assessed for statistical handling of non-independence, animal attrition,

outliers, ordinal data, and multiplicity. Exploratory analyses evaluated whether transparency

or statistical choices differed as a function of journal factors. A majority of articles failed to

account for sources of non-independence in the data (74–93%) and/or did not analytically

account for mid-treatment animal attrition (78%). Ordinal variables were often treated as

continuous (37%), outliers were predominantly not mentioned (83%), and plots often con-

cealed the distribution of the data (51%) Statistical choices and transparency did not differ

with regards to journal rank or reporting requirements. Statistical misapplication can result in

invalid experimental findings and inadequate reporting obscures errors. Clinician-scientists

evaluating preclinical work for translational promise should be mindful of commonplace

errors. Interventions are needed to improve statistical decision-making in preclinical behav-

ioral neurosciences research.

Introduction

Longitudinal and behavioral animal studies result in complex data that are often not well-

matched to elementary statistical approaches. If statistical analyses do not adequately account

for this complexity, study conclusions may be overly optimistic or invalid, with repercussions

for translational-decision-making. Translation of novel therapies from preclinical discovery to

efficacious human interventions is notoriously difficult. Though factors leading to transla-

tional failures are complex and varied, the commonplace lack of methodological rigor in pre-

clinical animal research has been heavily researched as a contributing reason for translational

failure [1–8]. Much of this research has focused on non-statistical aspects of methodological

rigor (including infrequency of randomization, failure to blind assessors, and incomplete dis-

closure of study procedures), and on the need for greater transparency in reporting detailed

methods. A recent review demonstrated that even among very high-impact publications,

many lacked methodological information to inform judgment of the findings and enable repli-

cation of the experimental protocol [9], and inadequate reporting repeatedly has been found

to correlate with overstated findings [10–12]. Efforts are underway to promote transparent

reporting [3], increase the number of preclinical systematic reviews and meta-analyses per-

formed [13, 14], and improve reproducibility in preclinical experiments [15].

Previous preclinical meta-research and commentary has included some attention to ele-

ments of statistical analysis and reporting [16], including disclosure of sample size calculations

[4, 16], problems with small sample sizes [17–19], the effects of attrition on statistical results

[20], ensuring analyses are appropriate for the experimental unit [21], calls for increased statis-

tical education among preclinical researchers and increased collaboration with statisticians

[22], and anecdotal mention of common analytical mistakes [23–25]. A recent scoping review

provides likely the most complete assessment of statistical transparency to date, and found

widespread problems with full statistical disclosure across the life sciences [26].

However, much of the current preclinical statistical meta-research literature still focuses on

transparent reporting and how to optimize analyses using relatively straightforward study

designs. A comprehensive evaluation of statistical practice for longitudinal studies specifically,

and the complex data they generate, is still needed. To this end, the current study rigorously

reviewed statistical decision-making and methodological reporting transparency in published
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preclinical mouse and rat controlled motor rehabilitation experiments for three neurologic con-

ditions. Recommendations are provided to put results into context for practical research use.

Methods

As this study includes only published meta-data, institutional review board approval was not

required. The full dataset has been deposited in Open Science Framework at https://osf.io/

dpqcu/?view_only=067709636da540329ed456382c6940af.

Search strategy and inclusion/exclusion criteria

Medline via PubMed was queried in February 2020 for English-language articles published or

available online ahead of print between January 1, 2017 and December 31, 2019. Title and

Abstract and MeSH terms were included in the search. The full search syntax is provided in

the Supplement. The three year time window was selected to provide a snapshot of recent prac-

tice and avoid confounds created by time.

The search strategy was initially broad to capture all articles employing rat or mouse models

of any neurological disease or injury assessing improvements in motor function. Stroke, TBI,

and PD were then chosen as three of the most common conditions under investigation in the

returned results. Rat or mouse models were chosen to ensure relative homogeneity of sample

sizes and statistical methods used in experiments, as larger animal models typically employ

smaller sample sizes or single-group study design, which require different statistical methods.

The search strategy did not include an explicit term for longitudinal study design, but the

terms “rehabilitation” and “recovery” were expected to return articles more likely to include

longitudinal data.

Included studies utilized therapeutic controlled experimental design; included at least one

intervention group and one comparison group; and included at least one functional motor

behavioral assessment or global evaluation of motor function. Articles with functional evalua-

tions were chosen for two reasons. First, functional evaluations at the preclinical stage will

result in outcome data more akin to the complex functional outcome data frequently used to

determine efficacy in human trials. This is true in terms of clinical meaning (e.g. a test of a

rodent’s ability to effectively grasp and release a small object assesses the same general con-

struct as an assessment of a human’s ability to grasp and release a small object), as well as data

structure (e.g. a preclinical behavioral task assessed multiple times over the course of treatment

will generate the same type of longitudinal data as a human clinical trial with multiple data col-

lection points). Second, limiting to one type of functional evaluation (motor) allowed article

raters to be efficiently trained regarding the typical data that result from common motor evalu-

ations. Meaning, an understanding of whether an assessment results in ordinal, count, or ratio

data, whether continuous data are likely to include outliers, and so on, was necessary for raters

to determine whether statistical tests may have been misapplied.

Articles were excluded if they were preventative; did not evaluate efficacy; did not include a

functional outcome; were not available in English; or were retracted. One article in the dataset

included the first author from this review as the study biostatistician. She did not participate in

the evaluation of that article.

Screening and data extraction

All articles were uploaded to Covidence, a systematic review software platform that enables

efficient screening of article abstracts and full texts. Each title and abstract was screened inde-

pendently by two of a team of three raters for the previously-detailed inclusion criteria. Using

structured data collection forms, a team of nine raters then evaluated the full texts of articles.
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Every item was extracted independently by two different raters. Rater disagreements were set-

tled by a third rater.

Team members with elementary formal education in statistics gathered animal details and

study design information. Team members with more advanced statistical education (n = 4)

evaluated statistical decision-making and transparency. Additional members of the study team

extracted author and journal information. Each rater was trained by a biostatistician with

expertise in analyzing complex preclinical data. Training was tailored to each rater and

included education on rodent behavioral tasks and the type of data they generate and how to

identify “red flags” for potential statistical insufficiencies in pre-clinical experiments (e.g. sam-

ple size inconsistencies between group allocation and presentation of results or unbalanced

groups suggesting possible undisclosed attrition, unduly large error bars in figures suggesting

possible outliers, etc.). A combination of assigned reading, one-on-one coaching, and group

verbal instruction was used. Several practice rounds of data collection were conducted prior to

beginning the study sample.

Items evaluated

Items are derived from three best-practice reporting guidelines: the “Animal Research: Report-

ing of In Vivo Experiments” (ARRIVE) guidelines, endorsed by more than a thousand journals

[3], the International Committee of Medical Journal Editors (ICMJE) uniform requirements

for manuscripts submitted to biomedical journals [27], and the “Statistical Analyses and Meth-

ods in the Published Literature” (SAMPL) guidelines [28]. Each item is presented in the

Results and Recommendations section with its rationale for inclusion in the review.

Statistical analyses

The primary purpose of this study is descriptive and results are presented as counts with pro-

portions. Many journals are represented in the sample multiple times, creating clustering

among articles from the same journals. Thus, each article was assigned a weight, calculated by

dividing the frequency of the most represented journal by the frequency of each other journal.

Descriptive statistics impacted by journal clustering are reported with weighted proportions

(%w) and standard error of proportion (SEP).

All inferential analyses are exploratory. When sample sizes allowed, analyses investigated

whether transparent reporting differed in journals that endorse or do not endorse ARRIVE;

provide or do not provide statistical reporting guidelines, require or do not require authors to

disclose which authors performed which roles in the study; or are higher ranked in the jour-

nal’s discipline (per Clarivate InCites 2018 data). Discipline-specific rank was considered two

ways: first, each journal was assigned the highest rank from all of its discipline-specific ranks;

second, the neurosciences-specific rank was retained for the subset of journals belonging to

the neurosciences.

Analyses assessing disclosure of author roles, ARRIVE endorsement, and provision of sta-

tistical reporting guidelines were conducted using Rao-Scott Chi-Square tests, a design-

adjusted version of the Pearson chi-square test that accounts for non-independence arising

from journal clustering and weighting [29]. Each statistical item was considered as a binary

dependent variable: reported/not reported. Comparisons evaluating journal rank (continuous

independent variable) were made using logistic regression with adjustments to the variance

approximation to account for clustering and weighting in the data [30]. Each logistic model

was evaluated for necessity of restricted cubic splines to relax the assumption of linearity (ulti-

mately not needed as assumption was met per visual inspection of predictor by logit scatter

plots).
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Exploratory analyses were two-tailed with 95% confidence limits and were carried out

using SAS Studio v. 3.7. Because the primary purpose of this study is to describe current prac-

tice, correction for multiple comparisons among exploratory analyses has not been made.

Results and recommendations

Summary statistics for all figures are included in the Supplement.

Characterization of the sample

The sample included 241 articles from 99 journals (the flow diagram is presented in Fig 1).

Table 1 includes a summary of basic experimental information from articles. Only thirteen

percent (13%) of all items from all articles required dispute settlement by a third reviewer.

Thirty-five journal disciplines were represented, with the highest numbers coming from

neuroscience journals (137) and clinical neurology journals (48). Complete frequencies of dis-

ciplines and journals represented are in Tables S1 and S2 in S1 File. Most journals were in the

top quartile for at least one discipline-specific rank (Fig 2A). The distribution of journal rank

within the neurosciences was relatively uniform (Fig 2B). A majority of journals did not

endorse ARRIVE guidelines and a majority did not provide guidance for reporting of statisti-

cal methods (Fig 2C). Disclosures regarding which authors performed which roles in study

execution were found in 39.3%w of articles (%w indicates weighted estimate, SEP = 3.77).

Independence: Clustering, repeated measurements, and longitudinal data

Rationale. Some study design factors can result in data wherein some data points are

more related to one another than to others (non-independence). Independence is an assump-

tion of most statistical tests, and transparency guidelines require confirmation that statistical

assumptions are met or disclosure of analytic choices if assumptions were not met [3, 28].

Determining whether data are independent requires attention to study design and what the

true experimental unit is.

Analyses for human clinical trials typically include statistical accommodations for non-

independence created by study design factors such as cohort, site, and longitudinal follow-up.

This is not yet commonplace in analyses of preclinical experiments in the neurosciences,

Fig 1. Flow diagram of articles included in the sample.

https://doi.org/10.1371/journal.pone.0265154.g001
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where common sources of non-independence include clustering factors (such as housing mul-

tiple animals together, cohort effects, and handler effects), repeated measurements at a single

time point (such as multiple behavioral trials within testing session or multiple biological sam-

ples taken per animal, the latter of which is not included in this review but detailed elsewhere),

and repeated measurements over time (longitudinal data).

An experiment may contain multiple sources of non-independence. For example, a lab may

run multiple sequential cohorts of animals due to space constraints, may repeat a trial of a

behavioral test three times in a row per testing session, and may repeat that behavioral testing

weekly for four weeks of treatment. Type I Error rate is inflated when running tests that assume

independence on clustered data [31]. Averaging repeated measurements and then comparing

means of means reduces power [32]. Longitudinal data analyzed without considering baseline

data may be biased, and some longitudinal analysis methods have strict assumptions [33].

Results. Report of common clustering factors was very low (Fig 3). Among the 227 articles

that included repeated measurements (Fig 4), multiple behavioral trials within a single testing

session were most commonly accounted for by averaging trials by session. Occasionally a sin-

gle score was selected per testing session to represent each animal.

Longitudinal data was most frequently accounted for by choosing a hypothesis test that utilizes

pre- and post-treatment values in the same test, such as a repeated measures analysis of variance

Table 1. Characterization of the sample: Study experimental details.

n (%)

Animal

Rat 149 (61.8)

Mouse 90 (37.3)

Both rat and mouse 2 (0.8)

Condition

Stroke 140 (58.1)

Traumatic Brain Injury 56 (23.2)

Parkinson Disease 45 (18.7)

Intervention

Drug 83 (34.4)

Biologic or stem cell 56 (23.2)

Behavioral or environmental 40 (16.6)

Neurostimulation 16 (6.6)

Supplement, vitamin, or mineral 11 (4.6)

Acupuncture, electroacupuncture, or laser acupuncture 10 (4.2)

Behavioral/environmental + drug/biologic/device 21 (8.7)

Othera 4 (1.7)

Functional Outcome Typeb

Balance and Coordination 149 (61.8)

Sensorimotor 85 (39.4)

Reaching and Forelimb 68 (28.2)

Global Neurological Rating Scales 60 (24.9)

Walking and Gait 24 (9.9)

a. n = 1 each: neurotization, low intensity focused ultrasound, low-level light emitting diode therapy (external), focal

cooling over motor cortex

b. Percentages do not equal 100 because some articles included more than one functional outcome. A complete list of

functional outcomes included by type can be found in the Supplement

https://doi.org/10.1371/journal.pone.0265154.t001
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(ANOVA). Forty percent performed multiple cross-sectional hypothesis tests (one per time point

of follow-up). Of these, 4.7%w (SEP = 2.75) displayed evidence of baseline group differences, while

the rest did not present any baseline data, nor confirm that groups were matched at baseline.

Recommendations. The low proportion of articles reporting clustering factors suggests

that authors do not realize that these factors should be accounted for statistically or acknowl-

edged as limitations, if they were not controlled in the study design. In studies with a behav-

ioral component as were included in this review, handler effects can be especially troublesome.

At minimum, these particular sources of non-independence should be disclosed and limita-

tions acknowledged. If they are not, readers should be mindful that housing, cohort, and han-

dler effects are possible and can result in inflated variability and imprecision of estimates.

When animals complete multiple behavioral trials within a single testing session (e.g. three

wire grip tests in a row), the unit of analysis is each trial (not each animal). Trials should be

Fig 2. Characterization of the sample: Journal details. Proportions are unweighted and error bars are not provided, because these descriptive statistics

are unaffected by article clustering within journal. a. Distribution of each journal’s highest discipline-specific rank (full sample, n = 241 articles). b.

Distribution of neurosciences rank (neurosciences subsample, n = 137 articles). c. Journal reporting requirements (n = 99 journals).

https://doi.org/10.1371/journal.pone.0265154.g002
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nested within testing session within animal in a model that accommodates non-independence.

Averaging scores from multiple trials or selecting the best score within testing session in order

to satisfy the assumption of independence reduces both power and the dimensionality in the

dataset and can impact results, particularly when averages are taken from a small number of

trials if a high amount of trial variability exists [32].

The use of multiple cross-sectional tests for longitudinal data inflates Type I Error rate and

any cross-sectional testing for longitudinal data can be subject to bias if animals are not per-

fectly matched at baseline. Pre-post testing is in many ways better, but carries its own limita-

tions, including relatively strict assumptions, such as equality of variances and balanced data

(discussed further in the Attrition section). Repeated measures or multivariate ANOVA also

Fig 3. Transparent reporting of common clustering factors in animal studies (n = 241). Proportions are weighted

to account for clustering of articles within journal. Error bars represent the standard error of the percentage.

https://doi.org/10.1371/journal.pone.0265154.g003

Fig 4. Techniques employed to account for repeated measurements (n = 227). Proportions are weighted to account

for clustering of articles within journal and do not add up to 100, as multiple techniques can be used per article for

different types of repeated measurements. Error bars represent the standard error of the percentage.

https://doi.org/10.1371/journal.pone.0265154.g004
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assumes equal correlations among multiple response variables, which is usually not true for

longitudinal studies, where measurements taken closer to one another in time are typically

more highly correlated (autoregressive structure) [34].

Depending on the study design and the resulting data structure, non-independence may be

accommodated statistically using multivariate ANOVA, marginal models, or mixed effects

models [35–37]. The mixed effects model, an extension of linear regression, is the most flexible

and is what is frequently used in human clinical trials to accommodate multiple sources of

non-independence. In cases where the assumptions of the multivariate ANOVA and the mar-

ginal model are not met and the mixed effects model is the best option, however, consultation

with a statistician is recommended, as these models are easy to mis-specify.

Attrition

Rationale. For longitudinal experiments, it is important to account for all animal deaths.

Typical pre-post-treatment hypothesis tests, such as a paired t-test or repeated measures

ANOVA, will not include partial data from animals that die or are removed mid-treatment.

However, such treatment of these animals as “missing” does not account for the possibility that

they may be poor treatment outcomes, and an analysis that could accommodate their partial

data might yield different results. Attrition can inflate the chances of a false positive finding, par-

ticularly with the small sample sizes common in preclinical research [20]. Results. For 60%w of

articles (SEP = 3.78), reviewers were unable to determine whether any animals died or were

removed during the experiment. Of these, 7.4%w (SEP = 2.67) were suspected to include unre-

ported deaths or removal of animals, because sample sizes were inconsistent between methods

and results without explanation. The remainder lacked explicit statements regarding animal

deaths and did not include sample sizes at both study onset and analysis. Of the 43 articles that

did detail animal deaths during treatment, less than half acknowledged potential bias from data

removal or attempted to include partial data in analysis, while the rest removed all data from

these animals and did not acknowledge whether removal might affect results (Fig 5).

Recommendations. Reasons and time points for all animal attrition should be detailed.

Some articles attempted to include partial animal follow-up by conducting one test per time

Fig 5. Analytic handling of animal attrition (n = 43). Listwise deletion means the analysis removes all animals

without complete data, such as occurs with a repeated measures ANOVA. Proportions are weighted to account for

clustering of articles within journal. Error bars represent the standard error of the percentage.

https://doi.org/10.1371/journal.pone.0265154.g005
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point, including all available data for that time point. Though this does allow all data to be

included, this approach inflates Type 1 error and is not recommended. Statistical methods

such as mixed effects models can accommodate partial animal follow-up. These models will

produce less biased estimates than tests that only include animals with complete data. For

cases where partial follow-up doesn’t exist, such as when a measurement is only taken pre- and

post-treatment (or only at study conclusion), it is important to report exact sample sizes at

both study onset and at analysis [3, 28]. Readers should be careful to note sample sizes, particu-

larly if sample sizes at randomization and at analysis do not match without explanation, or if

group sizes are unequal without explanation.

Continuous data: Outliers and figures

Rationale. ANOVA, t-tests, and linear regression are sensitive to outliers, particularly

when sample sizes are small, as is frequently the case in behavioral neuroscience experiments.

With small group sizes, the presence of a single animal in an intervention group with a very

positive response could affect the mean response so strongly as to make the intervention

appear successful as a whole if analyzed using parametric methods. Bar charts are commonly

used in neuroscience publications to display continuous data. Several tutorials have been pub-

lished illustrating how bar charts can obscure important aspects of the data that may support

or undermine the chosen analyses, including the possible presence of outliers [38–40].

Results. Two hundred thirty-nine articles included an analysis assuming a continuous

outcome. Of these, outliers were not mentioned in 83.2%w of articles (SEP = 2.89), and 51.3%

w of articles presented continuous data using bar charts (SEP = 3.85).

Recommendations. Investigators should thoroughly review the nature of the data their

experiments produce before analysis. Outliers should be identified and the decision-making

process should be detailed regarding whether to include outlying data points and, if so, how to

account for them statistically. Because bar charts do not allow adequate visualization of the

data distribution, other figures should be chosen, with efforts to depict all data points when-

ever possible. Readers should be mindful that the results of small-sample studies analyzed

using parametric methods may be impacted by undisclosed outliers.

Ordinal data

Rationale. Though ordinal variables’ categories are often labeled with numbers, these are

not numeric variables. The nature of an ordinal variable is such that levels do not represent

equal intervals (i.e. a change from a score of 0 to 1 on an ordinal symptom scale does not have

the same clinical meaning as a change from a score of 1 to 2; if it did, it would be an interval

variable). Thus, ordinal variables typically should not be analyzed using a t-test or an ANOVA.

Though there are occasions when ordinal variables can be treated as continuous [41], common

preclinical global evaluations of neurologic function are typically not suitable candidates for

this, having a small number of ordered categories and very different clinical meanings repre-

sented by the intervals between each category.

Results. Thirty-seven percent (36.6%w, SEP = 3.71) of the sample analyzed an ordinal var-

iable using an analysis that requires continuous data.

Recommendations. An ordinal variable with just a few ordered categories can be treated

as categorical. If this approach does not work for the research question, or the ordinal variable

has a larger number of categories, rank-based non-parametric tests (such as Wilcoxon-Mann-

Whitney or Kruskall-Wallis tests) can be used for some purposes. When a model-based

approach is needed (such as for testing interactions or including covariates), a number of

approaches may be used [42], including proportional odds [43], adjacent category [44],
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stereotype logit [45], and continuation ratio models [46]. When parametric tests are used for

ordinal data, readers should be mindful that a group mean for ordinal data does not have the

same clinical interpretability as a group mean for truly numeric data.

Multiplicity

Rationale. Multiple hypothesis tests on the same data inflate the chances of a false positive

finding. Preclinical neuroscience experiments often contain many statistical tests. It is accept-

able not to correct for multiplicity for exploratory studies, but analyses should be clearly

described as such and translational decision-makers should evaluate such findings with cau-

tion [47]. Confirmatory experiments should account for multiplicity.

Results. Zero articles applied a study-wide correction for multiple comparisons, and less

than 1%w justified the reason for not doing so (0.85%w, SEP = 0.71).

Recommendations. It should be made clear in the statistical methods whether and how

correction for multiple comparisons has been made, or the reasons for not doing so. If multi-

ple testing is not addressed and an article contains many hypothesis tests, readers should be

mindful that some “significant” results may be due to inflated Type I Error rate.

Sample size calculations

Rationale. Statistical significance is difficult to put in context without understanding the

size of effect for which the study was powered. Underpowered studies can result in failure to

detect an effect, and if an effect is detected, it will be imprecise [17].

Results. Only 35 (14.7%w, SEP = 2.72) articles mentioned sample size calculation. Of

these, 11 (26.5%w, SEP = 8.71) cited previously-published research as the source of data for

calculations, but did not provide values used in calculations (example quote: “The sample size

was chosen on the basis of our pilot experiments and those reported in previous publications”

(with citation)). Six articles (17.9%w, SEP = 7.70) did not describe the source of numbers used

in calculations (example quote; “Sample size in behavioral studies were assessed by power anal-

ysis using a significance level of α = 0.05 with 80% power to detect differences in ANOVA.”)

Fifteen (45.7%w, SEP = 10.2) mentioned “previous data” or similar, but did not provide cita-

tion or further explanation. Four provided all values used in calculations, with three of these

also including the source of values. (Example quotes are taken directly from articles in this

sample.)

Recommendations. A transparent sample size calculation should include the size of the

effect authors wish to detect (e.g. difference in means or proportions among groups), the

assumed variability, desired alpha and power, and explanation regarding from where numbers

were derived. Citation of previous work without including the values used in calculations is

not sufficient.

Subjective determination of statistical replicability

Rationale. Irreproducible statistical analyses have been proposed to be major contributors

to the broader reproducibility crisis. Furthermore, statistical analyses cannot be judged for

appropriateness during peer review or by readers if they are incompletely described.

Results. Article reviewers were asked whether they could replicate the statistical methods

of each article using the details provided in the article’s methods section. Reviewers agreed on

this item for 89.6% (n = 216) of articles. Only 14.5%w of articles (SEP = 2.19) were deemed by

both reviewers to have reporting sufficiently complete to enable replication of statistical meth-

ods. (Due to its intentional subjective nature, this item was not subject to tie-breaking by a

third reviewer.)
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Recommendations. Statistical analyses should be described with enough detail to enable

replication [3, 27, 28]. This should include all data pre-processing, methods for checking

assumptions, detail of all points of decision-making, and planned interpretation of results.

Non-statistical items

Rationale. This subset of non-statistical items from the ARRIVE guidelines were chosen

as a reporting transparency benchmark, being low effort to report and important to disclose

for reproducibility.

Results. Fig 6 displays weighted proportions of articles in compliance with each chosen

ARRIVE guideline. Articles from journals not endorsing ARRIVE did not display significantly

different weighted rates of reporting, relative to articles from journals requiring or recom-

mending ARRIVE. Neither highest discipline-specific rank nor neurosciences rank was associ-

ated with ARRIVE compliance. Among the subset of articles published in journals requiring

adherence to ARRIVE (n = 78), none reported all of the ARRIVE items included in this

review.

Recommendations. The ARRIVE items evaluated in this work were selected to interro-

gate whether even a small group of items that should be low-effort to report are disclosed. Our

findings align with previous work that found that ARRIVE compliance is low [3]. The impor-

tance of transparently reporting animal characteristics, group allocation, and blinding has

been detailed extensively by others.

Associations between statistical items and journal factors

Rationale. These comparisons were made to explore to what extent journal impact and

reporting guidelines (endorsement of ARRIVE, provision of statistical reporting guidelines,

requirement to disclose author roles) affect statistical quality and reporting.

Results. The majority of comparisons among each statistical item investigated and the

four journal factors were non-significant, with two exceptions: 1. Articles disclosing author-

ship roles mentioned sample size calculations twice as often as articles that did not disclose

authorship roles (69.4%w, 95% CI 50.7%-88.0%, SEP = 9.2; vs 34.1%w, 95% CI 26.3%-42.0%,

Fig 6. Proportions of articles in compliance with select ARRIVE guidelines, including requirement to disclose

animal strain, sex, age, and weight; and allocation and blinding techniques (n = 241). Proportions are weighted to

account for clustering of articles within journal. Error bars represent the standard error of the percentage.

https://doi.org/10.1371/journal.pone.0265154.g006
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SEP = 4.0). 2. Odds of mentioning sample size calculations increased 48% for every ten per-

centage points increase in highest rank (OR 1.48, 95% CI 1.18–1.78) and 72% for every ten per-

centage points increase in neurosciences rank (OR 1.72, 95% CI 1.25–2.20).

Recommendations. Insufficient reporting and statistical quality do not appear to be miti-

gated by journal reporting guidelines. More than half of journals in this sample do not provide

any statistical reporting guidance and reporting was not more complete in articles from jour-

nals that do. Only reporting of sample size calculations had an association with journal

requirements or rank, though mention of sample size calculations was low overall and only

three articles had what would be considered completely transparent sample size justifications.

Notably, though higher-ranked journals had higher odds of article mention of sample size cal-

culations, mention of sample size calculations was not associated with journal reporting guide-

lines. Thus, this relationship may reflect readership norms among higher- vs lower-ranked

journals, rather than journal requirements. Readers should not assume that articles from

higher ranked journals or journals with more strict reporting requirements will have more

complete reporting or better statistical quality.

Discussion

Findings of the current study illustrate that in preclinical neurosciences research of inter-

ventions for three neurological conditions with a motor behavior component, statistical

reporting is frequently incomplete and statistical misapplication is commonplace. Prob-

lems persist across journal disciplines and impact, and this study does not provide evi-

dence to suggest that journal reporting requirements improve transparent reporting or

statistical quality.

The statistical factors investigated in this study are not unrelated. Consider the follow-

ing example: a longitudinal experiment is conducted with weekly follow-up for six weeks.

In the absence of knowledge about models that can accommodate all data, the analyst must

choose whether to conduct a single pre-post test, using only data from baseline and the

final follow-up (thus losing all data from intermediate follow-up points, including partial

data from animals that die), or to conduct multiple cross-sectional tests at each point of fol-

low-up (thus ignoring baseline measurements and inflating Type I Error rate), or to con-

duct multiple pre-post tests from baseline to each point of follow-up (thus inflating Type I

Error rate). Each choice carries bias that could be prevented with the use of more sophisti-

cated statistical methods. Add in potential cage-mate, cohort, or handler effects, mishandl-

ing of ordinal data or outliers, and failure to correct for multiple testing if necessary, and

the potential for invalid statistical findings increases.

Limitations

This study was limited to motor interventions for three conditions in order to ensure relative

homogeneity in the articles with regards to experimental sample sizes and design, as well as to

allow training of raters in common experimental evaluation metrics so they could better evalu-

ate statistical choices. Further, our choice of inclusion criteria resulted in a sample of articles

that predominantly included complex longitudinal data. Thus, findings should be considered

directly generalizable to the indications and outcomes represented; the issues discussed herein

may have less relevance for other preclinical experimental designs and purposes. Additionally,

our findings are based on the null hypothesis significant test (NHST) and binary interpretation

of p-values predominate in preclinical work. NHST and the singular pursuit of a “significant”

p-value has been widely criticized [48–50], but further discussion is outside the scope of the

current work.

PLOS ONE Statistical practice in preclinical behavioral neurosciences

PLOS ONE | https://doi.org/10.1371/journal.pone.0265154 March 21, 2022 13 / 17

https://doi.org/10.1371/journal.pone.0265154


Article raters had varying levels of statistical expertise. Potential effects from this were miti-

gated by assigning raters to collect data appropriate for their levels of statistical experience,

extensive and tailored training, the use of structured data collection forms, and evaluation of

each data element by two or more raters. Relatedly, because statistical methods were often not

completely described, article raters had to evaluate statistical choices based on only the infor-

mation provided in the text. It should be made clear that results represent only the study

team’s best understanding of each article’s statistical methods. Next, though we accounted for

clustering of article within journal, some authors may have been included on multiple articles

in the sample. This adds an additional layer of complexity to the data, which was not

accounted for. Finally, journal word limits were not evaluated and this may impact level of

detail in reporting. This study was not pre-registered.

Conclusions

Statistical misapplication can result in everything from minor deviations in precision to invalid

findings, and may have serious repercussions for reproducibility and translational decision-

making. Clinician-scientists evaluating preclinical work for translational promise should not

assume that preclinical analyses have the level of quality typical of analyses of human clinical

data, nor that they received statistical review prior to publication. Interventions are needed to

improve statistical decision-making in preclinical neurosciences research.
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